Renewable Energy Information

 

Solar Panel, Solar Modules, Solar Powersolar panel array

Solar panels operate work on a principal called the photovoltaic effect which is the conversion of light into electricity. It was a Frenchman named Alexandre-Edmond Becquerel (24/3/1820 - 11/5/1891) who is credited with the discovery of the photovoltaic effect and as a result of his efforts the first solar cells were made around 1839.

The first solar cells put out miniscule amounts of electricity and the effect was considered novel but useless until it was taken up by photographic industry who were in need of a device to measure light. The first commercially built solar panels were tiny and used as light meters in cameras, and this use continues to this day.

The use of a solar panel as a light meter gives us the first important piece of information about solar panels: The output of a solar panel is directly proportional to the amount of light falling on it!

Types of Solar Panels

On the market today are three types of solar panels, mono-crystalline, multi-crystalline and amorphous. Mono and Multi-crystalline panels use silicone, the former has its cells cut from a single crystal silicone ingot, the later has its cells cut from a silicone ingot made from multiple shards of silicone all compressed and blended into a single bar. The panels pictured above are noncrystalline. Amorphous panels use silicone layered onto the panel substrate. Mono and multi-crystalline panels have the cells under glass. Amorphous panels have the silicone on top of a substrate that is usually a thin sheet of stainless steel.

The efficiency of a solar panel is based on its ability to convert sunlight to electricity and will be between 10 and 15 odd percent. This conversion factor is of little importance, apart from the fact that a high efficiency panel may be slightly smaller than a low efficiency panel. Efficiency is often a solar panel manufacturer's way of saying, look at how good our cells are. Given that when you buy a solar panel the output will be provided at an industry standard rating, the panel output is what really matters far more than the efficiency or manner of construction.

Here is what matters when you buy a solar panel!

What you want when you buy a solar panel are several things:

Solar Panel Power OutputSolar panel placard

Once upon a time just about all solar panels on the market were designed for charging batteries. Times have changed. The vast majority of solar panels on the market today are designed to generate power to contribute to the electricity grid. Panels that were designed for charging batteries had an output voltage suited to batteries, like 12, 24 or even 48 volts. Panels designed for feeding power into an electricity grid have voltages unrelated to charging batteries.

Solar panels will all come with a specification sheet and a placard that will define the panel's output according to industry established criteria. to the left is a photo of such a placard, this one from a battery charging panel called a KC120.

Here we can see some interesting stuff.

The placard goes on to state this stuff at a lower irradiance then the (optimistic) industry standard of 1000 watts per square metre.

Let's look at these figures one by one.

Pmax

120 watts, speaks for itself, this is the rating of the panel and what you should get from it in perfect conditions

Vpmax (Volts at maximum power)

Here they are telling us that the maximum power is obtained at 16.9 volts

Ipmax (Current in amps at maximum power)

Here they are telling us 7.1 amps is the current to expect at Vmax. If we grab a calculator and multiply volts by current we get the following:

7.1 x 16.9. No surprises here, the answer is 120 watts! (119.99 if you want to be precise)

Voc (Voltage "open circuit")

If you put the panel in the sun with nothing connected to it and measured the voltage across the positive and negative terminals with an accurate voltmeter this is what you should see. This panel is designed to charge a 12 volt battery. In order for a battery to charge, the supply voltage of the charging device must be higher than the battery being charged. Here the Voc and the Vpmax are both above the fully charged voltage of a 12 volt battery.

Isc (Current in a short circuit)

If you take this panel and put it in the bright sunshine with nothing connected and then connect an ammeter between the positive and negative terminals this is the current that should flow through the ammeter. By the way, you can run a solar panel in a short circuit (meaning with the positive terminal connected to the negative terminal) indefinitely, it is actually a very low load on the panel. A solar panel is one of the only electricity producing devices that can run happily in a short circuit.

Panels for Battery Charging

If you want the best value, easiest to get and decent sized solar panels you no longer buy battery charging panels, the only exception being if the solar installation you are contemplating is very small and only needs 150 watts of solar output or less to keep things charged.

To charge anything other than something small like a few lights, you are probably best off buying grid feed solar panels. I say probably, you work it out, remember to convert all panel prices you get into a dollar per watt sum. What also must be taken into a account is that a panel designed for grid feeding will probably require a more expensive solar regulator than its battery charging counterpart would require.

The downside of using grid feed solar panels to charge batteries is that you will need a specialised solar regulator to interface between the panels and the batteries if you want to get the maximum amount of power out of your solar array. A device called a maximising regulator will do the trick just fine.

Maximising regulators are covered in the "Solar Regulators" page ....